Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1903): 20220327, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38643789

ABSTRACT

By embedding a spatially explicit ecosystem services modelling tool within a policy simulator we examine the insights that natural capital analysis can bring to the design of policies for nature recovery. Our study is illustrated through a case example of policies incentivising the establishment of new natural habitat in England. We find that a policy mirroring the current practice of offering payments per hectare of habitat creation fails to break even, delivering less value in improved flows of ecosystem services than public money spent and only 26% of that which is theoretically achievable. Using optimization methods, we discover that progressively more efficient outcomes are delivered by policies that optimally price activities (34%), quantities of environmental change (55%) and ecosystem service value flows (81%). Further, we show that additionally attaining targets for unmonetized ecosystem services (in our case, biodiversity) demands trade-offs in delivery of monetized services. For some policy instruments it is not even possible to achieve the targets. Finally, we establish that extending policy instruments to offer payments for unmonetized services delivers target-achieving and value-maximizing policy designs. Our findings reveal that policy design is of first-order importance in determining the efficiency and efficacy of programmes pursuing nature recovery. This article is part of the theme issue 'Bringing nature into decision-making'.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Policy , Natural Resources , Models, Theoretical , England , Conservation of Natural Resources/methods , Biodiversity
2.
Front Biogeogr ; 15(2): e59408, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37680769

ABSTRACT

The mopane worm (Gonimbrasia belina) is an edible insect distributed across southern Africa. As a culturally important source of food, the mopane worm provides nutrition, livelihoods and improves wellbeing for rural communities across its range. However, this is strong evidence that insect populations are declining worldwide, and climate change is likely to cause many insect species to shift in their distributions. For these reasons, we aimed to model how the ecosystem service benefits of the mopane worm are likely to change in the coming decades. We modelled the distribution of the mopane worm under two contrasting climate change scenarios (RCPs 4.5 and 8.5). Moreover, given that the mopane worm shows strong interactions with other species, particularly trees, we incorporated biotic interactions in our models using a Bayesian network. Our models project significant contraction across the species' range, with up to 70% decline in habitat by the 2080s. Botswana and Zimbabwe are predicted to be the most severely impacted countries, with almost all habitat in Botswana and Zimbabwe modelled to be lost by the 2080s. Decline of mopane worm habitat would likely have negative implications for the health of people in rural communities due to loss of an important source of protein as well as household income provided by their harvest. Biogeographic shifts therefore have potential to exacerbate food insecurity, socio-economic inequalities, and gender imbalance (women are the main harvesters), with cascading effects that most negatively impact poor rural communities dependent on natural resources.

3.
Proc Biol Sci ; 290(2000): 20230061, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37282530

ABSTRACT

Masturbation occurs throughout the animal kingdom. At first glance, however, the fitness benefits of this self-directed behaviour are unclear. Regardless, several drivers have been proposed. Non-functional hypotheses posit that masturbation is either a pathology, or a byproduct of high underlying sexual arousal, whereas functional hypotheses argue an adaptive benefit. The Postcopulatory Selection Hypothesis states that masturbation aids the chances of fertilization, while the Pathogen Avoidance Hypothesis states that masturbation helps reduce host infection by flushing pathogens from the genital tract. Here, we present comprehensive new data documenting masturbation across the primate order and use these, in conjunction with phylogenetic comparative methods, to reconstruct the evolutionary pathways and correlates of masturbation. We find that masturbation is an ancient trait within the primate order, becoming a more common aspect of the haplorrhine behavioural repertoire after the split from tarsiers. Our analyses provide support for both the Postcopulatory Selection and Pathogen Avoidance Hypotheses in male primates, suggesting that masturbation may be an adaptive trait, functioning at a macroevolutionary scale.


Subject(s)
Masturbation , Primates , Animals , Male , Phylogeny
4.
Wellcome Open Res ; 7: 147, 2022.
Article in English | MEDLINE | ID: mdl-38504774

ABSTRACT

Background: A shift toward human diets that include more fruit and vegetables, and less meat is a potential pathway to improve public health and reduce food system-related greenhouse gas emissions. Associated changes in land use could include conversion of grazing land into horticulture, which makes more efficient use of land per unit of dietary energy and frees-up land for other uses. Methods: Here we use Great Britain as a case study to estimate potential impacts on biodiversity from converting grazing land to a mixture of horticulture and natural land covers by fitting species distribution models for over 800 species, including pollinating insects and species of conservation priority. Results: Across several land use scenarios that consider the current ratio of domestic fruit and vegetable production to imports, our statistical models suggest a potential for gains to biodiversity, including a tendency for more species to gain habitable area than to lose habitable area. Moreover, the models suggest that climate change impacts on biodiversity could be mitigated to a degree by land use changes associated with dietary shifts. Conclusions: Our analysis demonstrates that options exist for changing agricultural land uses in a way that can generate win-win-win outcomes for biodiversity, adaptation to climate change and public health.

5.
Ecol Lett ; 23(2): 283-292, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31755210

ABSTRACT

Larger testes produce more sperm and therefore improve reproductive success in the face of sperm competition. Adaptation to social mating systems with relatively high and low sperm competition are therefore likely to have driven changes in relative testes size in opposing directions. Here, we combine the largest vertebrate testes mass dataset ever collected with phylogenetic approaches for measuring rates of morphological evolution to provide the first quantitative evidence for how relative testes mass has changed over time. We detect explosive radiations of testes mass diversity distributed throughout the vertebrate tree of life: bursts of rapid change have been frequent during vertebrate evolutionary history. In socially monogamous birds, there have been repeated rapid reductions in relative testes mass. We see no such pattern in other monogamous vertebrates; the prevalence of monogamy in birds may have increased opportunities for investment in alternative behaviours and physiologies allowing reduced investment in expensive testes.


Subject(s)
Birds , Testis , Animals , Biological Evolution , Male , Phylogeny , Reproduction , Sexual Behavior, Animal , Spermatozoa
6.
Proc Biol Sci ; 286(1898): 20182418, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30836875

ABSTRACT

Resolving the timing and pattern of early placental mammal evolution has been confounded by conflict among divergence date estimates from interpretation of the fossil record and from molecular-clock dating studies. Despite both fossil occurrences and molecular sequences favouring a Cretaceous origin for Placentalia, no unambiguous Cretaceous placental mammal has been discovered. Investigating the differing patterns of evolution in morphological and molecular data reveals a possible explanation for this conflict. Here, we quantified the relationship between morphological and molecular rates of evolution. We show that, independent of divergence dates, morphological rates of evolution were slow relative to molecular evolution during the initial divergence of Placentalia, but substantially increased during the origination of the extant orders. The rapid radiation of placentals into a highly morphologically disparate Cenozoic fauna is thus not associated with the origin of Placentalia, but post-dates superordinal origins. These findings predict that early members of major placental groups may not be easily distinguishable from one another or from stem eutherians on the basis of skeleto-dental morphology. This result supports a Late Cretaceous origin of crown placentals with an ordinal-level adaptive radiation in the early Paleocene, with the high relative rate permitting rapid anatomical change without requiring unreasonably fast molecular evolutionary rates. The lack of definitive Cretaceous placental mammals may be a result of morphological similarity among stem and early crown eutherians, providing an avenue for reconciling the fossil record with molecular divergence estimates for Placentalia.


Subject(s)
Biological Evolution , Eutheria/anatomy & histology , Phylogeny , Animals , Eutheria/classification , Evolution, Molecular
7.
Nat Ecol Evol ; 1(12): 1889-1895, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29109469

ABSTRACT

Most modern mammals, including strictly diurnal species, exhibit sensory adaptations to nocturnal activity that are thought to be the result of a prolonged nocturnal phase or 'bottleneck' during early mammalian evolution. Nocturnality may have allowed mammals to avoid antagonistic interactions with diurnal dinosaurs during the Mesozoic. However, understanding the evolution of mammalian activity patterns is hindered by scant and ambiguous fossil evidence. While ancestral reconstructions of behavioural traits from extant species have the potential to elucidate these patterns, existing studies have been limited in taxonomic scope. Here, we use an extensive behavioural dataset for 2,415 species from all extant orders to reconstruct ancestral activity patterns across Mammalia. We find strong support for the nocturnal origin of mammals and the Cenozoic appearance of diurnality, although cathemerality (mixed diel periodicity) may have appeared in the late Cretaceous. Simian primates are among the earliest mammals to exhibit strict diurnal activity, some 52-33 million years ago. Our study is consistent with the hypothesis that temporal partitioning between early mammals and dinosaurs during the Mesozoic led to a mammalian nocturnal bottleneck, but also demonstrates the need for improved phylogenetic estimates for Mammalia.


Subject(s)
Biological Evolution , Circadian Rhythm , Dinosaurs , Mammals/physiology , Animals , Fossils , Phylogeny
8.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25165765

ABSTRACT

Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size-complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen-worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size-complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity.


Subject(s)
Ants/physiology , Behavior, Animal , Social Behavior , Animals , Appetitive Behavior , Biological Evolution , Phylogeny , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...